Please wait a minute...
工程设计学报  2015, Vol. 22 Issue (6): 528-533    DOI: 10.3785/j.issn. 1006-754X.2015.06.003
创新设计     
基于机器视觉实时决策的智能投饵系统研究
乔 峰1,郑 堤2,胡利永2,魏玉艳1
1. 宁波大学 机械工程与力学学院,浙江 宁波 315211;
2. 浙江大学宁波理工学院 机电与能源工程学院,浙江 宁波 315100
Research on smart bait casting machine based on machine vision technology
QIAO Feng1, ZHENG Di2, HU Li-yong2, WEI Yu-yan1
1. Faculty of Mechanical Engineering and Mechanics, Ningbo University, Ningbo 315211, China;
2. College of Mechatronics and Energy Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China
 全文: PDF(1775 KB)   HTML
摘要: 随着海洋养殖业的不断发展,传统投饵方式与设备已不能满足日益增长的需求.鱼群摄食具有一定的规律,实时判别鱼群摄食状态并用于控制投饵具有重要意义.采用机器视觉技术与嵌入式系统构建了实时图像采集和处理系统,通过实时图像处理技术提取了鱼群位置、数量特征值,得到了鱼群的摄食规律;建立了投饵机下料和抛料等执行机构运动学与动力学模型;结合实时图像处理结果得到的鱼群摄食规律和投饵机的执行机构模型构建了智能投饵系统,并对投饵效果进行了实验验证.实验结果表明,所开发的基于机器视觉实时决策的智能投饵系统能按照鱼群生长需求进行投饵,可提高饵料利用率,降低残余饵料对水体的污染,节约养殖成本,提升鱼类品质.
关键词: 机器视觉图像处理智能投饵实时控制    
Abstract: In recent years, with the development of marine aquaculture technology, the traditional way and equipment of bait casting can not meet the growing demands any more. As fishes are fed with certain regularities, it is important to acquire the feeding conditions of the fishes, and on the basis, to control the bait casting equipment in real time. Applying machine vision technology and embedded system to collect and process the images about fish feeding, the eigenvalues of the fish feeding condition, such as the position, number, and degree of hungry of the fishes, could be obtained in real time. A smart bait casting machine was developed. The kinematic, dynamic, and control models of the baiting and throwing mechanisms of the machine were established. The smart control of the bait casting process was achieved based on the results of real time image process and the model of the machine. Experimental result showed that the smart machine developed based on machine vision and real time decision technology could cast the bait according to the growing requirement of the fishes, and therefore, the bait utilization could be increased, the bait waste and water pollution reduced, the aquatic cultivation cost saved, and the fish quality improved as well.
Key words: machine vision    image processing    smart bait casting    real-time control
收稿日期: 2015-07-06 出版日期: 2015-12-28
基金资助:

宁波市重大农业科技专项(2015C110015)

作者简介: 乔峰(1988-),男,河北张家口人,硕士生,从事机电测控与海洋装备研究,E-mail:qiaofeng5477@163.com. 通信联系人:郑堤(1956-),男,浙江宁波人,教授,博士,从事机电测控与海洋装备研究,E-mail:zhengdi@nbu.edu.cn.
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

乔 峰,郑 堤,胡利永,魏玉艳. 基于机器视觉实时决策的智能投饵系统研究[J]. 工程设计学报, 2015, 22(6): 528-533.

QIAO Feng, ZHENG Di, HU Li-yong, WEI Yu-yan. Research on smart bait casting machine based on machine vision technology. Chinese Journal of Engineering Design, 2015, 22(6): 528-533.

链接本文:

https://www.zjujournals.com/gcsjxb/CN/10.3785/j.issn. 1006-754X.2015.06.003        https://www.zjujournals.com/gcsjxb/CN/Y2015/V22/I6/528

[1] 张爱云, 王吉华, 高崴, 张美娟. 基于机器视觉的VVT发动机转子缺陷检测系统设计[J]. 工程设计学报, 2021, 28(6): 776-784.
[2] 李梦. 基于机器视觉的车道线在线识别系统设计[J]. 工程设计学报, 2020, 27(4): 498-507.
[3] 乔景慧, 李岭. 基于机器视觉的电视机背板检测及自适应抓取研究[J]. 工程设计学报, 2019, 26(4): 452-460.
[4] 张伟, 高慧敏. 笔管缺陷自动化检测系统设计与研究[J]. 工程设计学报, 2019, 26(3): 346-353.
[5] 彭忠超, 戚媛婧, 舒斌, 颜科, 段吉安. 基于机器视觉的激光器封装自动对准系统[J]. 工程设计学报, 2017, 24(6): 687-693,716.
[6] 李丽娟, 徐尚龙, 秦 杰. 基于图像处理技术的五金件表面缺陷检测研究[J]. 工程设计学报, 2011, 18(2): 134-138.
[7] 罗 胜. 基于机器视觉的鞋楦数字化及类似方法对比[J]. 工程设计学报, 2007, 14(1): 57-61.